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Abstract. By abstracting a connection between gauge symmetry and gauge identity on a noncommutative
space, we analyse star (deformed) gauge transformations with the usual Leibniz rule as well as undeformed
gauge transformations with a twisted Leibniz rule. Explicit structures of the gauge generators in either case
are computed. It is shown that, in the former case, the relation mapping the generator with the gauge iden-
tity is a star deformation of the commutative space result. In the latter case, on the other hand, this relation
gets twisted to yield the desired map.

1 Introduction

Recent analysis [1–6] of gauge transformations in noncom-
mutative theories reveals that, in extending gauge sym-
metries to a noncommutative space-time, there are two
distinct possibilities. Gauge transformations are either de-
formed such that the standard comultiplication (Leibniz)
rule holds or one retains the unmodified gauge transform-
ations as in the commutative case at the expense of altering
the Leibniz rule. In the latter case the new rule to compute
the gauge variation of the star products of fields results
from a twisted Hopf algebra of the universal enveloping al-
gebra of the Lie algebra of the gauge group extended by
translations.
While both these approaches preserve gauge invari-

ance of the action, there is an important distinction. In
the case of deforming gauge transformations into star
gauge transformations, gauge symmetries act only on the
fields in a similar way as in theories on commutative
space-time. Star gauge symmetry can thus be interpreted
as a physical symmetry in the usual sense. On the con-
trary, if ordinary gauge transformations are retained and
a twisted Leibniz rule is implemented, then the trans-
formations do not act only on the fields. Consequently
it is not a physical symmetry in the conventional sense,
and its connection with the previous case also remains
obscure [5].
In this paper we analyse both these approaches within

a common framework, which also illuminates a correspon-
dence with the treatment of gauge symmetry in commu-
tative space-time. To do this we recall that there is a gen-
eral method of discussing gauge symmetries, either in the
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Lagrangian or Hamiltonian formulations, for theories on
commutative space-time. We shall here concentrate on the
Lagrangian version; for a detailed exposition, see [7]. It is
known that, corresponding to each gauge symmetry, there
is a gauge identity that is expressed in terms of the Eu-
ler derivatives. Moreover, this identity also involves the
generator of infinitesimal gauge transformations in a very
specific manner.
We extend this analysis to noncommutative gauge theo-

ries. A relation between the gauge generator and the gauge
identity is derived. It is found to be a star deformation of
the relation found in the usual commutative picture. From
this relation and from knowledge of the gauge identity (ob-
tained by simple inspection) the explicit form of the gauge
generator is derived. Then the other viewpoint of keep-
ing the gauge transformation undeformed at the price of
a twisted Leibniz rule is considered. The generator of the
undeformed gauge transformation is derived. Its structure
is shown to be similar to the commutative space expres-
sion. Furthermore, we find that the relation connecting the
gauge generator with the gauge identity (which is form in-
variant, irrespective of whether star or twisted gauge trans-
formations are being considered) is neither the undeformed
result nor its star deformation, as obtained in the previous
treatment. Rather, it is a twisted form of the conventional
(undeformed) result.
This paper is organised as follows. In Sect. 2 we briefly

review the situation in which both interpretations of non-
commutative gauge symmetry lead to identical conserva-
tion laws. Sections 3 and 4 give a detailed account of the
computations for deformed gauge symmetry with the stan-
dard Leibniz rule and undeformed gauge symmetry with a
twisted Leibniz rule, respectively. Explicit expressions for
the generators and their connection with the gauge identity
are analysed. Section 5 is a summary.
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2 Gauge transformations
and conservation law

Consider a theory on noncommutative space-time whose
dynamics is governed by the action1

S =

∫
d4x

[
−
1

2
Tr(Fµν(x)∗F

µν(x))

+ ψ̄(x)∗ (iγµDµ ∗−m)ψ(x)

]
, (1)

where

Dµ ∗ψ(x)≡ ∂µψ(x)+ igAµ(x)∗ψ(x) (2)

Fµν(x) ≡ ∂µAν(x)−∂νAµ(x)+ ig[Aµ(x), Aν(x)]∗ .
(3)

Here the star commutator is given by

[Aµ(x), Aν(x)]∗ =Aµ(x)∗Aν(x)−Aν(x)∗Aµ(x) ,
(4)

while the star product is defined as usually by

(f ∗ g)(x) = exp

(
i

2
θµν∂xµ∂

y
ν

)
f(x)g(y)

∣∣∣∣
x=y

(5)

where θµν is a constant two index antisymmetric object.
The above action describes the noncommutative ver-

sion of a non-Abelian theory that includes both the gauge
and a matter (fermionic) sector with a proper interaction
term. This action is invariant under both deformed gauge
transformations,

δ∗Aµ =Dµ ∗η = ∂µη+ ig(Aµ ∗η−η ∗Aµ)

δ∗Fµν = ig[Fµν , η]∗ = ig(Fµν ∗η−η ∗Fµν)

δ∗ψ =−igη ∗ψ

δ∗ψ̄ = igψ̄ ∗η , (6)

with the usual Leibniz rule,

δ∗(f ∗ g) = (δ∗f)∗ g+f ∗ (δ∗g) (7)

as well as the undeformed gauge transformations

δηAµ =Dµη = ∂µη+ ig(Aµη−ηAµ),

δηFµν = ig[Fµν , η] = ig(Fµνη−ηFµν)

δηψ =−igηψ

δηψ̄ = igψ̄η , (8)

with the twisted Leibniz rule [1–3],

δη(f ∗ g) =
∑
n

(
−i

2

)n
θµ1ν1 · · · θµnνn

n!

× (δ∂µ1 ···∂µnηf ∗∂ν1 · · ·∂νng

+∂µ1 · · · ∂µnf ∗ δ∂ν1 ···∂νnηg) . (9)

1 We are considering a non-Abelian theory.

The essence of this modified rule is that the gauge parame-
ter η always remains outside the star operation, and hence
is unaffected by it. This fact becomes important when we
discuss the twisted gauge symmetry (8) and (9).
It is obvious from (3) and the definition of the gauge

transformations (6) that, in general, both Aµ and Fµν are
enveloping algebra valued for deformed gauge symmetry.
For the case of twisted gauge symmetry, (8) and (9), how-
ever, one has to consider the equation of motion derived
later (see (23)), interpreted as equations for the gauge field
Aµ, to conclude that here alsoAµ is enveloping algebra val-
ued. The field tensor Fµν , by its very definition (3), is of
course enveloping algebra valued. Thus, in both treatments
of gauge symmetry,Aµ and Fµν are enveloping algebra val-
ued [2]. This implies that the gauge potential Aµ has to
be expanded over a basis of the vector space spanned by
the homogeneous polynomials in the generators of the Lie
algebra,

Aµ(x) =Aµa(x) : T
a : +Aµa1a2(x) : T

a1T a2 :

+ · · ·Aµa1a2···an(x) : T
a1T a2 · · ·T an : + · · ·

(10)

where the double dots indicate totally symmetrised
products,

: T a : = T a

: T a1T a2 : =
1

2
{T a1, T a2}=

1

2
(T a1T a2+T a2T a1)

: T a1 · · ·T an : =
1

n!

∑
π∈Sn

T aπ(1) · · ·T aπ(n) . (11)

These symmetrised products may be simplified by using
the basic Lie algebraic relation,

[
T a, T b

]
= ifabcT c , (12)

where the fabc are the structure constants.
To be specific let us take the case of SU(2) in the two

dimensional representation. In this representation the gen-
erators are the 2× 2 Pauli matrices (T a = σa

2 ), satisfy-
ing (12), with fabc = εabc and

{
σa

2
,
σb

2

}
=
1

2
δab (a= 1, 2, 3) . (13)

We may thus write Aµ as follows:

Aµ =Bµ+A
a
µσ
a (a= 1, 2, 3) . (14)

It is also possible to interpret this situation as giving rise
to the standard representation of U(2) with its four gener-
ators (I, σa):

Aµ =A
a
µT
a (T a = I, σa) . (15)

Similarly in the three dimensional representation of SU(2),
the generators are defined in the adjoint representation,
(T a)bc =−iεabc. Now the process of symmetrisation in (11)
yields nine 3×3 linearly independent hermitian matrices
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(these are the three T a and the six {T a, T b}), and hence
we obtain the standard representation of U(3). This im-
plies that the enveloping algebra valued Aµ given in (10) is
equivalently simplified to a Lie algebraic U(3) representa-
tion withAµ =A

a
µT
a, where the T a are the nine generators

of U(3).
In general one can verify that the generators given

by (11), apart from forming a Lie algebra (12), also close
under anticommutation [8, 9],

{
T a, T b

}
= dabcT c . (16)

The simpler nontrivial algebra that matches these condi-
tions is U(N) in the representation given by N ×N hermi-
tian matrices.
Following [10, 11], it is feasible to choose T 1 =
1√
2N
I(N×N) and the remaining N

2− 1 of the T as in
SU(N). Then the trace condition also follows:

Tr(T aT b) =
1

2
δab (17)

and fabc and dabc are completely antisymmetric and com-
pletely symmetric, respectively.
In the rest of this paper we will work with these simpli-

fications. The gauge potential and the field strength will be
explicitly written as,

Aµ =A
a
µT
a , (18)

Fµν = F
a
µνT

a , (19)

where the T a are the N2 hermitian generators of U(N)
that satisfy the conditions (12), (16) and (17).
In order to derive the field equations we need the fol-

lowing well known properties of the star product within an
integral:

∫
dxA(x)∗B(x) =

∫
dxA(x)B(x)

=

∫
dxB(x)∗A(x) , (20)

a special case of which is given by

∫
(A∗B ∗C) =

∫
(B ∗C ∗A)

=

∫
(C ∗A∗B) . (21)

First, we vary the gauge field A to see the variation of the
action (1). We follow the convention of keeping the field to
be varied at the extreme left. Then we get

δS

δAσ(y)
=

∫
d4x

[
−Tr

δFµν(x)

δAσ(y)
∗Fµν(x)

+
δ

δAσ(y)
(−gψ̄ ∗γνAν ∗ψ)

]
,

where, in the first integral, (20) has been used. Fur-
ther simplifications are done by using the cyclicity prop-
erty (21) in the second integral of the above expression.We
obtain

δS

δAσ(y)
=

∫
d4x

[
−Tr

δ

δAσ(y)

×(∂µAν−∂νAµ+ ig[Aµ, Aν ]∗)∗F
µν(x)

+
δ

δAσ(y)

(
gAν ∗ψjγ

ν
ij ∗ ψ̄i

) ]
.

The extra negative sign in the second integral is due
to the flip of two grassmannian variables. Finally, using
the fact that Fµν is antisymmetric in its indices, we
obtain

δS

δAσ(y)
=

∫
d4x

[
−2Tr

δ

δAσ(y)

× (∂µAν + igAµ ∗Aν)∗F
µν(x)

+
δAν(x)

δAσ(y)
∗
(
gψjγ

ν
ij ∗ ψ̄i

) ]

=

∫
d4x

[
2Tr
δAν(x)

δAσ(y)

∗ (∂µF
µν(x)+ igAµ ∗F

µν− igFµν∗Aµ)

+
δAν(x)

δAσ(y)
∗
(
gψjγ

ν
ij ∗ ψ̄i

) ]
. (22)

The invariance of the action together with (17) now leads
to the equation of motion for the gauge field,

∂µF
µν + ig[Aµ, F

µν ]∗+ j
ν = 0 , (23)

where jν is the fermionic current,

jν = gψj(γ
ν)ij ∗ ψ̄i . (24)

The variation of the matter field ψ̄ in the action (1)
yields

δS

δψ̄(y)
=

∫
d4x

δ

δψ̄(y)

(
ψ̄ ∗ iγµ∂µψ

− gψ̄ ∗γµAµ ∗ψ−mψ̄ ∗ψ
)

=

∫
d4x
δψ̄(x)

δψ̄(y)
∗ (iγµ∂µψ− gγ

µAµ ∗ψ−mψ) ,

(25)

which gives the equation of motion

iγµ∂µψ− gγ
µAµ ∗ψ−mψ = 0 . (26)

Similarly, for the other matter field we get the equation of
motion:

i∂µψ̄γ
µ+ gψ̄ ∗γµAµ+mψ̄ = 0 . (27)
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Operating by ∂ν on (23) we get a current conservation
law [6]:

∂νJ
ν = 0;Jν ≡ ig[Aµ, F

µν ]∗+ j
ν . (28)

This can be explicitly verified from the definition of Jν , as
follows:

∂νJ
ν = ig[∂νAµ, F

µν ]∗+ ig[Aµ, ∂νF
µν ]∗+∂νj

ν

=−
1

2
ig[∂µAν −∂νAµ, F

µν ]∗

+ ig [Aµ, ig[Aν , F
νµ]∗+ j

µ]∗+∂νj
ν

=−
1

2
ig[Fµν , F

µν ]∗

+
(ig)2

2
[[Aµ, Aν ]∗, F

µν ]∗− (ig)
2 [Aµ, [Aν , F

µν ]∗]∗

+ ig[Aµ, j
µ]∗+∂νj

ν .

Since the first term on the right hand side vanishes triv-
ially, we write the above expression as

∂νJ
ν =
(ig)2

2

(
[[Aµ, Aν ]∗, F

µν ]∗− [Aµ, [Aν , F
µν ]∗]∗

+ [Aν , [Aµ, F
µν ]∗]∗

)
+ ig[Aµ, j

µ]∗+∂νj
ν .

The term in the parentheses vanishes from the Jacobi iden-
tity, and we obtain

∂νJ
ν = ig[Aµ, j

µ]∗+∂νj
ν . (29)

(Star) multiplying (26) by−igψ̄ from the right and (27) by
−igψ from the left, and then adding those two equations,
we find

∂νJ
ν = ig[Aµ, j

µ]∗+∂νj
ν = 0 , (30)

where the definition (24) of jµ has been used. It is also
possible to obtain the current defined in (28) from (1) by
using a Noether-like procedure [5]. If we make the fol-
lowing “global” transformation on the gauge and matter
fields:

δAµ(x) = ig[ω(x), Aµ(x)]∗ , (31)

δψ(x) =−igω(x)∗ψ(x) , (32)

δψ̄(x) = igψ̄(x)∗ω(x) , (33)

and set ω(x) constant at the end of the calculation, the
conserved current (28) follows from (1).
As has been stressed [5] the conservation law (28) is

compatible with both types of gauge symmetry (6) (with
the Leibniz rule (7)) and (8) (with the Leibniz rule (9)).
One finds, for instance, ∂µ(δ∗J

µ) = ∂µ(δηJ
µ) = 0. It is

clear that the conservation law is unable to provide any dis-
tinction between the two types of gauge transformations.
This is not surprising, since this conservation law is an
on-shell symmetry that is quite distinct from the gauge
symmetry that is an off-shell symmetry. So in the next two
sections we study the gauge (both star gauge and twisted
gauge) symmetry of the system where on-shell considera-
tions are discarded. The difference between the star gauge
and twisted gauge symmetries thereby is made manifest.

3 Analysis for star gauge transformation

As already stated, the presence of gauge symmetry is char-
acterised by an identity that is called the gauge identity. In
this section we first discuss a general formalism to connect
this identity with the gauge generator that eventually leads
to the gauge transformations. Next we use this method for
the particular model (1) to find the gauge generators from
which the star deformed gauge transformations (6) are sys-
tematically obtained.
Consider the general form of the action on noncommu-

tative space:2

S =

∫
dtL=

∫
d4xL (qα(x, t), ∂iqα(x, t), ∂tqα(x, t)) ,

(34)

where α denotes the number of fields. An arbitrary varia-
tion of this action can be written as

δS =−

∫
d4xδqα(x, t)∗Lα(x, t) , (35)

where the vanishing of the Euler derivative L yields the
equations of motion. Now, if we vary the field qα in the fol-
lowing way:

δqα(x, t) =
n∑
s=0

(−1)s
∫
d3z
∂sηb(z, t)

∂ts
∗ραb(s)(x, z)

(36)

with η and ρ being the parameter and generator, respec-
tively, of the transformation, the variation of the action can
be written by (35) as

δS =−

∫
d4x

∫
d3zηb(z, t)∗ραb(0)(x, z)∗Lα(x, t)

−

∫
d4x

n∑
s=1

(−1)s
∫
d3z
∂

∂t

(
∂s−1ηb(z, t)

∂ts−1

)

∗ραb(s)(x, z)∗Lα(x, t)

=−

∫
d4x

∫
d3zηb(z, t)∗ραb(0)(x, z)∗Lα(x, t)

−

∫
d4x

n∑
s=1

(−1)s−1
∫
d3z
∂s−1ηb(z, t)

∂ts−1

∗
∂

∂t

(
ραb(s)(x, z)∗Lα(x, t)

)

=−

∫
d4zηb(z, t)∗

(∫
d3xραb(0)(x, z)∗Lα(x, t)

)

−

∫
d4zηb(z, t)∗

(∫
d3x
∂

∂t

(
ραb(1)(x, z)∗Lα(x, t)

))

−· · · (37)

Equation (37) is written in the compact form

δS =−

∫
d4zηa(z, t)∗Λa(z, t) (38)

2 Here we adopt the notation x for the four vector xµ = (x, t).
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where3

Λa(z, t) =

[
n∑
s=0

∫
d3x
∂s

∂ts

(
ραa(s)(x, z)∗Lα(x, t)

)]
.

(39)

If the action is invariant (δS = 0), then it implies

Λa(z, t) = 0 . (40)

The last equality must be identically valid without use
of any equation of motion. It is called the gauge iden-
tity. Equation (36) defines the gauge transformation of the
fields with ρ being the generator. Furthermore, the gauge
identity involves the generator and Euler derivatives in
a specific fashion given by (39).
There are now two ways to apply this general formula-

tion to a specific gauge model. Starting from knowledge of
the gauge transformations δq (obtained, for instance, by in-
spection) it should be possible to compute the generators
ρ by using (36). Then the explicit structure for the gauge
identity follows from (39). Alternatively, one starts from
the gauge identity (obtained as shown below), inverts the
process, finally generating the gauge transformations. Here
we adopt the second approach for the model (1).
The first step to obtain the gauge identity is to derive

the Euler derivatives. This is simply done by considering an
arbitrary variation of the action (1), expressed in terms of
the variations of the basic fields,

δS =−

∫
d4xδAaµ ∗L

µa+ δψi ∗Li+ δψ̄i ∗L
′
i (41)

where the Euler derivatives Laµ, Li and L
′
i are given by

Lµa =− (Dσ ∗F
σµ)a− gψj(γ

µT a)ij ∗ ψ̄i (42)

Li =−i∂µψ̄j(γ
µ)ji− gψ̄j ∗ (γ

µAaµT
a)ji−mψ̄i (43)

L′i =−i(γ
µ)ij∂µψj+ g(γ

µAaµT
a)ij ∗ψj+mψi . (44)

Here the covariant derivative D is defined in the adjoint
representation,

Dµ ∗ ξ = ∂µξ+ ig[Aµ, ξ]∗ , (45)

(Dµ ∗ ξ)
a = ∂µξ

a−
g

2
fabc
{
Abµ, ξ

c
}
∗
+ i
g

2
dabc
[
Abµ, ξ

c
]
∗
,

(46)

where we have used (12) and (16). We now define a quan-
tity Λ, involving the various Euler derivatives of the system
as follows:

Λa =− (Dµ ∗Lµ)
a− igT aijψj ∗Li− igT

a
jiL
′
i ∗ ψ̄j . (47)

Exploiting the definitions of the covariant derivative (45)
and the Euler derivatives ((42), (43) and (44)), the above
expression, by an explicit calculation, is found to be zero,

3 Equations (38) and (39) are the star deformed version of the
commutative space results given, for instance, in [7, 12].

i.e. it vanishes identically without using any equations of
motion,

Λa =− (Dµ ∗Lµ)
a− igT aijψj ∗Li− igT

a
jiL
′
i ∗ ψ̄j = 0 .

(48)

The above relation is the cherished gauge identity for
the model (1). It is important to note that the structure
of Λa in (47) is similar to the general form (39) in the
sense that it involves the appropriate Euler derivatives. By
a comparison of the two, the generators ρ are obtained. To
this end, let us now write (39) in a convenient way that is
more suitable for our particular model,

Λa(z, t) =
∑
s

∫
d3x
∂s

∂ts

(
ρbµa(s) (x, z)∗L

b
µ(x, t)

)

+
∑
s

∫
d3x
∂s

∂ts
(
φai (x, z)∗Li(x, t)

+ φ′
a
i (x, z)∗L

′
i(x, t)

)
. (49)

The values of the generators ρ, φ and φ′ are obtained
by comparing (47) and (49). Since the calculations involve
some subtlety due to the noncommutative nature of the
coordinates, a couple of intermediate steps are presented
here. The contribution coming from the zeroth compon-
ent of the gauge field Euler derivative Lµ can be written
by (48) as

Λa|L0 =−
(
D0 ∗L0

)a
=−
g

2
fabc
{
Lb0, A

0c
}
∗
+ i
g

2
dabc
[
Lb0, A

0c
]
∗
−
∂

∂t
La0 .

(50)

We write the above equation in the following form:

Λa|L0(z, t) =−
g

2
fabc
∫
d3x
(
Lb0(x)∗A

0c(x)

+A0c(x)∗Lb0(x)
)
∗ δ3(x−z)

−
i

2
dabc
∫
d3x
(
Lb0(x)∗A

0c(x)

−A0c(x)∗Lb0(x)
)
∗ δ3(x−z)

−

∫
d3x
∂

∂t
La0(x)∗ δ

3(x−z) , (51)

where we have used the property (20). Furthermore, ex-
ploiting the cyclicity property of the star product (21), (51)
is further simplified, so as to bring the Euler derivative at
an extreme end,

Λa|L0(z, t) =−

∫
d3x
g

2

(
fabc
{
δ3(x−z), A0c(x)

}
∗

+idabc
[
δ3(x−z), A0c(x)

]
∗

)
∗Lb0(x)

−

∫
d3xδabδ3(x−z)∗

∂

∂t
Lb0(x) . (52)

The same contribution coming from (49) can be written
as

Λa|L0(z, t) =
∑
s

∫
d3x
∂s

∂ts

(
ρb0a(s) (x, z)∗L

b
0(x, t)

)
.

(53)
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Only s= 0, 1 contribute, so that the above equation simpli-
fies to

Λa|L0(z, t) =

∫
d3x

(
ρb0a(0) (x, z)∗L

b
0(x, t)

+ρb0a(1) (x, z)∗
∂

∂t
Lb0(x, t)

)
. (54)

Comparing (52) and (54), we obtain

ρb0a(0) (x, z) =−
g

2
fabc
{
δ3(x−z), Ac0(x)

}
∗

− i
g

2
dabc
[
δ3(x−z), Ac0(x)

]
∗

(55)

ρb0a(1) (x, z) =−δ
abδ3(x−z) . (56)

The other components of the gauge generator can be ob-
tained in a similar way. Here we give the full expressions of
these components, which will be useful in finding the gauge
transformations of the various fields.

ρbia(0)(x, z) =−δ
ab∂ izδ3(x−z)

−
g

2
fabc
{
δ3(x−z), Aic(x)

}
∗

− i
g

2
dabc
[
δ3(x−z), Aic(x)

]
∗
, (57)

φai(0)(x, z) =−igT
a
ijδ
3(x−z)∗ψj(x) , (58)

φ′
a
i(0)(x, z) =−igT

a
jiψ̄j(x)∗ δ

3(x−z) . (59)

Let us next consider the gauge transformations.
From (36) we write the gauge transformation equation for
the zeroth component of the gauge field

δA0a(x, t) =
∑
s

(−1)s
∫
d3z
∂sηb(z, t)

∂ts
∗ρa0b(s) (x, z)

=

∫
d3z

(
ηb(z, t)∗ρa0b(0) (x, z)

−
∂ηb(z, t)

∂t
∗ρa0b(1) (x, z)

)
. (60)

Exploiting the identity [8, 9]

A(x)∗ δ(x− z) = δ(x− z)∗A(z) (61)

and interchanging a, b, the generator (55) is recast to

ρa0b(0) (x, z) =
g

2
fabc
{
δ3(x−z), Ac0(z)

}
∗

+ i
g

2
dabc
[
δ3(x−z), Ac0(z)

]
∗
. (62)

Use of (62) and (56) along with the identities (20) and (21)
in (60) implies that

δA0a = ∂0ηa−
g

2
fabc
{
A0b, ηc

}
∗
+ i
g

2
dabc
[
A0b, ηc

]
∗

=
(
D0 ∗η

)a
, (63)

where the operator D had already been defined in (45). In
a similar way, using the expression (59), we can get the

space component of the gauge transformation of the Aµ

field:

δAia = ∂iηa−
g

2
fabc
{
Aib, ηc

}
∗
+ i
g

2
dabc
[
Aib, ηc

]
∗

=
(
Di ∗η

)a
. (64)

Combining the two results (63) and (64), we get the follow-
ing star covariant gauge transformation rule for the gauge
field

δAµa = (Dµ ∗η)a . (65)

The same process leads to the star gauge transformation
relations of the matter fields:

δψi(x) =−igη
a(x)∗T aijψj(x) (66)

δψ̄i(x) = igT
a
jiψ̄j(x)∗η

a(x) . (67)

Thus the star gauge transformations of all the fields
have been systematically obtained. These transformations
((65), (66) and (67)) are the results previously stated
in Sect. 2, (6), under which the action (1) is invariant.
Also, the generators ρ are mapped with the gauge iden-
tity Λa (48) by the relation (39). If we set θ = 0, then
these just correspond to the usual commutative space
results for Yang–Mills theory in the presence of mat-
ter [7]. This implies that, as it occurs for the gauge
transformations, the mapping (39) is also a star defor-
mation of the usual undeformed (commutative space)
map.
Let us now mention a technical point. In obtaining the

gauge transformations – say (63) from (60) – use is made
of identities like (20) and (21), which are strictly valid over
the whole four dimensional space-time. Since (60) involves
only the space integral, manipulations based on these iden-
tities imply only space–space noncommutativity. This is
quite reminiscent of the Hamiltonian formulation of gauge
symmetries [9], where θ0i = 0 from the beginning.
We conclude this section by providing a simple consis-

tency check. We show that the variation of the action (1)
is indeed expressed in the form (38), where Λa is given
by (47). Starting from (41) and using the explicit struc-
tures of the variations derived in (65), (66) and (67)), we
obtain

δS =−

∫
d4x(Dµ ∗η)a ∗Laµ

+(−igηa ∗T aijψj)∗Li+(igT
a
jiψ̄j ∗η

a)∗L′i

=−

∫
d4xηa ∗

(
(−Dµ ∗Lµ)

a

− igT aijψj ∗Li− igT
a
jiL
′
i ∗ ψ̄j

)
. (68)

The expression star multiplied with the gauge parameter
ηa is precisely Λa given by (47), conforming to the general
form (38). This completes the consistency check.
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4 Analysis for twisted gauge transformation

For simplicity we take the pure gauge theory,

S =−
1

2

∫
d4xTr (Fµν(x)∗F

µν(x)) , (69)

where the field strength tensor was defined in (3). Now the
gauge field transforms in the undeformed way,

δηAµ = ∂µη+ ig [Aµ, η] . (70)

Using the deformed coproduct rule (9) and the gauge
transformation (70), the variation of the (star) product of
the gauge fields is also seen to be undeformed,

δη (Aµ ∗Aν) = ∂µηAν +Aµ∂νη− ig [η, (Aµ ∗Aν)] .
(71)

From the above result, the gauge transformation of the
field strength tensor is now computed and found to be

δηFµν = ∂µδηAν −∂νδηAν + igδη [Aµ, Aν ]∗ (72)

= ∂µ (∂νη+ ig [Aν , η])−∂ν (∂µη+ ig [Aµ, η])

+ ig
(
[∂µη,Aν ]+ [Aµ, ∂νη]− ig [η, [Aµ, Aν ]∗]

)
(73)

=−ig [η, Fµν ] . (74)

Likewise, one finds that the expression Fµν ∗Fµν trans-
forms as

δη (F
µν ∗Fµν) =−ig [η, F

µν ∗Fµν ] . (75)

Both Fµν and Fµν ∗Fµν have the usual (undeformed)
transformation properties. Thus the action (69) is invari-
ant under the gauge transformation (70) and the deformed
coproduct rule (9).
There is another way of interpreting the gauge invari-

ance that makes contact with the gauge identity. Making
a gauge variation of the action (69) and taking into account
the twisted coproduct rule (9), we get

δηS =−
1

2

∫
d4xTrδη (Fµν ∗F

µν) (76)

=−
1

2

∫
d4x
[
Tr
(
δηFµν ∗F

µν+Fµν ∗ δηF
µν

−
i

2
θµ1ν1

(
δ∂µ1ηFµν ∗∂ν1F

µν +∂µ1Fµν ∗ δ∂ν1ηF
µν
)

−
1

8
θµ1ν1θµ2ν2

(
δ∂µ1∂µ2ηFµν ∗∂ν1∂ν2F

µν

+ ∂µ1∂µ2Fµν ∗ δ∂ν1∂ν2ηF
µν
)
+ · · ·

)]
. (77)

Now using the result (73) each term of (77) can be com-
puted separately. For example, let us concentrate on the
first term. Using the identity (20) and the trace condi-
tion (17), we write the first term

δηS|1st term =−
1

4

∫
d4x
(
δηF

µνa ∗F aµν +F
µνa ∗ δηF

a
µν

)
(78)

=−
1

2

∫
d4xδηF

µνaF aµν . (79)

Making use of (73) and dropping the surface terms, the
above expression is found to be

δηS|1st term =−

∫
d4xηa

(
−∂µ∂νFµν − ig∂

µ [Aν , Fµν ]

− ig [Aµ, ∂νFµν ]+ g
2 [Aµ ∗Aν , Fµν ]

)a
.

(80)

The second term of (77) is identically zero due to the anti-
symmetric nature of θµν . We write it

δηS|2nd term =−
1

2

∫
d4xηa

i

2
θµ1ν1(−ig {∂µ1F

µν , ∂ν1Fµν})
a

(81)

=−

∫
d4xηa

i

2
θµ1ν1

(
−ig {∂µ1∂

µAν , ∂ν1Fµν}

+ g2 {∂µ1 (A
µ ∗Aν) , ∂ν1Fµν}

)a
(82)

=−

∫
d4xηa

i

2
θµ1ν1

(
−ig∂µ {∂µ1A

ν , ∂ν1Fµν}

− ig {∂µ1A
µ, ∂ν1∂

νFµν}

+ g2 {∂µ1 (A
µ ∗Aν) , ∂ν1Fµν}

)a
. (83)

The third term is written as

δηS|3rd term =−

∫
d4x (∂µ1∂µ2ηa)

1

2

(
i

2

)2
θµ1ν1θµ2ν2

×
(
−∂µ∂ν∂ν1∂ν2Fµν
− ig∂µ [Aν , ∂ν1∂ν2Fµν ]

− ig [Aµ, ∂ν∂ν1∂ν2Fµν ]

+ g2 [Aµ ∗Aν, ∂ν1∂ν2Fµν ]
)a
. (84)

Using the antisymmetry of θµν and dropping the various
surface terms, we write the above expression as

δηS|3rd term =−

∫
d4xηa

1

2

(
i

2

)2
θµ1ν1θµ2ν2

×
(
− ig∂µ [∂µ1∂µ2Aν , ∂ν1∂ν2Fµν ]

− ig [∂µ1∂µ2Aµ, ∂ν∂ν1∂ν2Fµν ]

+ g2 [∂µ1∂µ2 (Aµ ∗Aν) , ∂ν1∂ν2Fµν ]
)a
.

(85)

The other terms can be obtained in a similar manner. Com-
bining all these terms, we finally get

δηS =−

∫
d4xηa

(
−∂µ∂νFµν − ig∂

µ [Aν , Fµν ]∗

− ig [Aµ, ∂νFµν ]∗+ g
2 [Aµ ∗Aν, Fµν ]∗

)a
(86)

=−

∫
d4xηaΛa , (87)

where

Λa =− (Dµ ∗Lµ)
a
=− (Dµ ∗Dσ ∗Fσµ)

a
, (88)

which vanishes identically. Note that this is exactly the
same as the expression in the gauge identity (48) with-
out the fermionic fields. This proves the invariance of the
action.
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Let us now repeat the analysis of the previous sec-
tion with appropriate modifications. Since the gauge trans-
formations are undeformed, the gauge generators are ex-
pected to have the same form as in the commutative space.
To see this, note that the gauge variation of the zeroth com-
ponent of the Aµ field, following from (70), can be written
as

δηA
a
0(z) = ∂0η

a(z)− gfabcAb0(z)η
c(z)

= g

∫
d3zfabcAc0η

bδ3(x−z)

+

∫
d3zδabδ3(x−z)

∂

∂t
ηb . (89)

Clearly the above result can be expressed in our standard
form (36),

δηA
a
0(z) =

∑
s

(−1)s
∫
d3z
∂sηb(z, t)

∂ts
ρa0b(s) (x, z)

=

∫
d3zηb(z, t)ρa0b(0) (x, z)

−

∫
d3z
∂ηb(z, t)

∂t
ρa0b(1) (x, z) , (90)

where

ρa0b(0) (x, z) = gf
abcAc0δ

3(x−z) (91)

ρa0b(1) (x, z) =−δ
abδ3(x−z) (92)

is the gauge generator. Similarly

δηA
a
i (z) = ∂iη

a(z)− gfabcAbi (z)η
c(z) (93)

is written in the form

δηA
a
i (z) =

∑
s

(−1)s
∫
d3z
∂sηb(z, t)

∂ts
ρaib(s) (x, z) (94)

for the value

ρaib(0)(x, z) =−δ
ab∂ izδ3(x−z)

+ gfabcAci δ
3(x−z) . (95)

No star products appear in the gauge generators ρ, and
their structure is similar to the undeformed commutative
space expressions. To identify the difference (both from the
commutative space results and the star deformed results) it
is essential to look at the gauge identity and its connection
with the corresponding gauge generator.
Now as already implied in (88), we have a gauge iden-

tity for this system, exactly similar to the previous case,

Λa =− (Dµ ∗Lµ)
a
= 0 , (96)

whereLµ is the Euler derivative defined in (88). The Euler–
Lagrange equation of motion is given by

Dσ ∗Fσµ = 0 . (97)

The gauge identity and the Euler derivatives are
mapped by the relation

Λa(z, t) =
n∑
s=0

∫
d3x
∂s

∂ts

(
ρ′
bµa
(s) (x, z)L

b
µ(x, t)

)
, (98)

where the values of ρ′
bµa
(0) (x, z) and ρ

′bµa
(1) (x, z) are equal

to those of ρbµa(0) and ρ
bµa
(1) of the previous example, given

in (55), (56) and (59). This happens since the Euler deriva-
tives and the gauge identity are identical to those dis-
cussed in the previous section. However, here ρ′ is not
the generator; rather ρ is (see (91), (92) and (95)). Conse-
quently ρ′ has to be expressed in terms of ρ. To do this, we
rewrite (55) under the identification ρ= ρ′ as

ρ′
b0a
(0) (x, z) =−

g

2
fabc
{
δ3(x−z), Ac0(x)

}
∗

− i
g

2
dabc
[
δ3(x−z), Ac0(x)

]
∗
. (99)

Now making use of the definition of the star product (5),
the above expression is written in the following way:

ρ′
b0a
(0) (x, z) =−gf

abcAc0δ
3(x−z)

− g
∞∑
n=1

(
i

2

)n
θµ1ν1 · · · θµnνn

n!

×

[(
fabc

2
+ i
dabc

2

)
∂µ1 · · · ∂µnδ

3(x−z)∂ν1 · · · ∂νnA
0c(x)

(
+
fabc

2
− i
dabc

2

)
∂µ1 · · · ∂µnA

0c(x)∂ν1 · · · ∂νnδ
3(x−z)

]
.

(100)

Note that the θ independent term is nothing but the
gauge generator ρb0a(0) given in (91). Similarly calculating

the other components ρ′
bia
(0) and ρ

′b0a
(1) from (56) and (59), we

obtain

ρ′
bµa
(0) (x, z) = ρ

bµa
(0) (x, z)

− g
∞∑
n=1

(
i

2

)n
θµ1ν1 · · · θµnνn

n!

×

[(
fabc

2
+ i
dabc

2

)
∂µ1 · · · ∂µnδ

3(x−z)∂ν1 · · · ∂νnA
µc(x)

(
+
fabc

2
− i
dabc

2

)
∂µ1 · · · ∂µnA

µc(x)∂ν1 · · · ∂νnδ
3(x−z)

]

(101)

ρ′
b0a
(1) (x, z) = ρ

b0a
(1) (x, z). (102)

We conclude that, although the generator remains
undeformed, the relation mapping the gauge identity
with the generator is neither the commutative space re-
sult nor its star deformation as found in the other ap-
proach. Rather, it is twisted from the undeformed re-
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sult. The additional twisted terms are explicitly given
in (101).

5 Conclusions

Gauge symmetries on canonically deformed coordinate
spaces have been considered. Both possibilities (namely,
deformed gauge transformations keeping the standard
Leibniz rule intact or undeformed gauge transformations
with a twisted Leibniz rule) were analysed within a com-
mon framework. Explicit structures of the gauge genera-
tors were obtained in either case. The connection of these
generators with the gauge identity, which must exist when-
ever there is a gauge symmetry, was also established. In the
former case, this connection was a star deformation of the
commutative space result. In the latter case, on the other
hand, the commutative space result was appropriately
twisted. It is quite remarkable that these fundamental
properties of the gauge symmetries (i.e. the occurrence of
the gauge identity and its connection with the correspond-
ing generator through the Euler derivatives) were found
in the noncommutative theory, adopting either of the two
interpretations. This suggests that deformed gauge theo-
ries have properties similar to what we desire for physics,
at least as far as gauge symmetries are concerned. All re-

sults obtained here reduce to the usual commutative space
expressions in the limit of vanishing θ.
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